Involvement of the mitogen-activated protein kinase cascade in peroxynitrite-mediated arachidonic acid release in vascular smooth muscle cells.

نویسندگان

  • Rita K Upmacis
  • Ruba S Deeb
  • Matthew J Resnick
  • Rochelle Lindenbaum
  • Caryn Gamss
  • Dev Mittar
  • David P Hajjar
چکیده

Eicosanoid production is reduced when the nitric oxide (NO.) pathway is inhibited or when the inducible NO synthase gene is deleted, indicating that the NO. and arachidonic acid pathways are linked. We hypothesized that peroxynitrite, formed by the reaction of NO. and superoxide anion, may cause signaling events leading to arachidonic acid release and subsequent eicosanoid generation. Western blot analysis of rat arterial smooth muscle cells demonstrated that peroxynitrite (100-500 microM) and 3-morpholinosydnonimine (SIN-1; 200 microM) stimulate phosphorylation of extracellular signal-regulated kinase (ERK), p38, and cytosolic phospholipase A(2) (cPLA(2)). We found that peroxynitrite-induced arachidonic acid release was completely abrogated by the mitogen-activated protein/ERK kinase (MEK) inhibitor U0126 and by calcium chelators. With the p38 inhibitor SB-20219, we demonstrated that peroxynitrite-induced p38 phosphorylation led to minor arachidonic acid release, whereas U0126 completely blocked p38 phosphorylation. Addition of arachidonic acid caused p38 phosphorylation, suggesting that arachidonic acid or its metabolites are responsible for p38 activation. KN-93, a specific inhibitor of Ca(2+)/calmodulin-dependent kinase II (CaMKII), revealed no role for this kinase in peroxynitrite-induced arachidonic acid release in our cell system. Together, these results show that in response to peroxynitrite the cell initiates the MEK/ERK cascade leading to cPLA(2) activation and arachidonic acid release. Thus studies investigating the role of the NO. pathway on eicosanoid production must consider the contribution of signaling pathways initiated by reactive nitrogen species. These findings may provide evidence for a new role of peroxynitrite as an important reactive nitrogen species in vascular disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pertussis toxin-sensitive G proteins as mediators of the signal transduction pathways activated by cytomegalovirus infection of smooth muscle cells.

We demonstrated recently that the arachidonic acid (AA) cascade is involved in cytomegalovirus (CMV)-induced generation of reactive oxygen species (ROS) and the activation of nuclear factor (NF)-kappaB in human smooth muscle cells (SMCs). Since AA release from neutrophils is mediated by pertussis toxin (PTx)-sensitive guanine nucleotide-binding (G) proteins, we hypothesized by analogy that CMV ...

متن کامل

α-Lipoic acid prevents neointimal hyperplasia via induction of p38 mitogen-activated protein kinase/Nur77-mediated apoptosis of vascular smooth muscle cells and accelerates postinjury reendothelialization.

OBJECTIVE To explore whether α-lipoic acid (ALA), a naturally occurring antioxidant, inhibits neointimal hyperplasia by inducing apoptosis of vascular smooth muscle cells and to examine its potential effects on reendothelialization and platelet aggregation. METHODS AND RESULTS Restenosis and late stent thrombosis, caused by neointimal hyperplasia and delayed reendothelialization, are signific...

متن کامل

20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin-dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells.

Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by ...

متن کامل

Purinergic signaling and vascular cell proliferation and death.

Evidence for the role of purinergic signaling (via P1 and P2Y receptors) in the proliferation of vascular smooth muscle and endothelial cells is reviewed. The involvement of the mitogen-activated protein kinase second-messenger cascade in this action is clearly implicated, although details of the precise intracellular pathways involved still remain to be determined. Synergistic actions of purin...

متن کامل

Norepinephrine-induced stimulation of p38 mitogen-activated protein kinase is mediated by arachidonic acid metabolites generated by activation of cytosolic phospholipase A(2) in vascular smooth muscle cells.

p38 mitogen-activated protein kinase (MAPK) is activated by norepinephrine (NE) in the vasculature and is implicated in vascular smooth muscle hypertrophy, contraction, and cell migration. NE promotes influx of Ca(2+) and activates cytosolic phospholipase A(2) (cPLA(2)) in vascular smooth muscle cells (VSMC). The purpose of this study was to determine the contribution of cPLA(2)-generated arach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 286 6  شماره 

صفحات  -

تاریخ انتشار 2004